The Drosophila Transcription Factors Tinman and Pannier Activate and Collaborate with Myocyte Enhancer Factor-2 to Promote Heart Cell Fate

نویسندگان

  • TyAnna L. Lovato
  • Cheryl A. Sensibaugh
  • Kirstie L. Swingle
  • Melody M. Martinez
  • Richard M. Cripps
  • Leonard Eisenberg
چکیده

Expression of the MADS domain transcription factor Myocyte Enhancer Factor 2 (MEF2) is regulated by numerous and overlapping enhancers which tightly control its transcription in the mesoderm. To understand how Mef2 expression is controlled in the heart, we identified a late stage Mef2 cardiac enhancer that is active in all heart cells beginning at stage 14 of embryonic development. This enhancer is regulated by the NK-homeodomain transcription factor Tinman, and the GATA transcription factor Pannier through both direct and indirect interactions with the enhancer. Since Tinman, Pannier and MEF2 are evolutionarily conserved from Drosophila to vertebrates, and since their vertebrate homologs can convert mouse fibroblast cells to cardiomyocytes in different activator cocktails, we tested whether over-expression of these three factors in vivo could ectopically activate known cardiac marker genes. We found that mesodermal over-expression of Tinman and Pannier resulted in approximately 20% of embryos with ectopic Hand and Sulphonylurea receptor (Sur) expression. By adding MEF2 alongside Tinman and Pannier, a dramatic expansion in the expression of Hand and Sur was observed in almost all embryos analyzed. Two additional cardiac markers were also expanded in their expression. Our results demonstrate the ability to initiate ectopic cardiac fate in vivo by the combination of only three members of the conserved Drosophila cardiac transcription network, and provide an opportunity for this genetic model system to be used to dissect the mechanisms of cardiac specification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The zinc finger proteins Pannier and GATA4 function as cardiogenic factors in Drosophila.

The regulation of cardiac gene expression by GATA zinc finger transcription factors is well documented in vertebrates. However, genetic studies in mice have failed to demonstrate a function for these proteins in cardiomyocyte specification. In Drosophila, the existence of a cardiogenic GATA factor has been implicated through the analysis of a cardial cell enhancer of the muscle differentiation ...

متن کامل

Hand is a direct target of Tinman and GATA factors during Drosophila cardiogenesis and hematopoiesis.

The existence of hemangioblasts, which serve as common progenitors for hematopoietic cells and cardioblasts, has suggested a molecular link between cardiogenesis and hematopoiesis in Drosophila. However, the molecular mediators that might link hematopoiesis and cardiogenesis remain unknown. Here, we show that the highly conserved basic helix-loop-helix (bHLH) transcription factor Hand is expres...

متن کامل

Spire, an Actin Nucleation Factor, Regulates Cell Division during Drosophila Heart Development

The Drosophila dorsal vessel is a beneficial model system for studying the regulation of early heart development. Spire (Spir), an actin-nucleation factor, regulates actin dynamics in many developmental processes, such as cell shape determination, intracellular transport, and locomotion. Through protein expression pattern analysis, we demonstrate that the absence of spir function affects cell d...

متن کامل

Cardiac expression of the Drosophila Sulphonylurea receptor gene is regulated by an intron enhancer dependent upon the NK homeodomain factor Tinman

Cardiac development proceeds via the activation of a complex network of regulatory factors which both directly and indirectly impact downstream cardiac structural genes. In Drosophila, the NK homeodomain transcription factor Tinman is critical to cardiac specification and development via the activation of a number of key regulatory genes which mediate heart development. In this manuscript, we d...

متن کامل

Gata factor Pannier is required to establish competence for heart progenitor formation.

Inductive signaling is of pivotal importance for developmental patterns to form. In Drosophila, the transfer of TGFbeta (Dpp) and Wnt (Wg) signaling information from the ectoderm to the underlying mesoderm induces cardiac-specific differentiation in the presence of Tinman, a mesoderm-specific homeobox transcription factor. We present evidence that the Gata transcription factor, Pannier, and its...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015